

Welcome to the KloudBuster documentation!

Contents:

	KloudBuster version 7
	Feature List

	New in Release 7

	Limitations and Non-Goals

	Contributions and Feedbacks

	Licensing

	Links

	Architecture
	Data Plane Scale Test

	Storage Scale Test

	Progression Runs

	Latency and Distributed Latency at Scale

	Gallery
	Sample HTTP Scale Report

	Sample HTTP Monitoring Report

	Sample Storage Scale Report

	Usage and Quick Start Guides
	KloudBuster User Interfaces

	OpenStack Cloud Pre-Requisites

	KloudBuster Installation Options

	Quick Start Guides

	Using the KloudBuster Web UI

	Interacting with the KloudBuster REST Interface

	Get the KloudBuster VM Image

	Configuration Options
	Default HTTP Scale Test

	Default Storage Scale Test

	KloudBuster Configuration File

	KloudBuster Standard Scale Profile
	Standard scale profile definition

	How to run the standard scale profile

	Interpret the results

	Advanced Features
	Control the VM Placement

	Interactive mode

	Running KloudBuster without admin access

	Displaying the Results

	Examples of running KloudBuster

	OpenStack Resources Cleanup
	How to Select Resources to Delete

	Known Issues and Limitations

	Examples

	Frequently Asked Questions
	KloudBuster in a nutshell?

	Why is a tool like KloudBuster useful?

	What do you mean by comprehensive end to end scale testing?

	How scalable is KloudBuster itself?

	General Usage Questions

	HTTP Data Plane Testing

	Storage Scale Testing

	Common Pitfalls and Limitations

	Development
	Building the KloudBuster VM and Docker images

	Pushing the Docker container to DockerHub

	Contributing
	Contribute to KloudBuster

	File Bugs

	Build the KloudBuster Docker Image

	Developer’s Guide of OpenStack

Indices and tables

	Index

	Module Index

	Search Page

KloudBuster version 7

How good is your OpenStack data plane or storage service under real
heavy load?

KloudBuster is a tool that can load the data plane or storage infrastructure of
any OpenStack cloud at massive scale and measure how well the cloud behaves
under load where it matters: from the VMs standpoint, where cloud applications
run.

Accessible to anybody with basic knowledge of OpenStack, installs in minutes
and runs off the box with sensible default workloads in a fully automated way.
CLI/REST or Web User Interface.. you pick what works best for you.

Feature List

	Neutron configuration agnostic (any encapsulation, any overlay, any plugin)

	OpenStack Storage backend agnostic

	Real VM-level performance and scale numbers (not bare metal)

	Punishing scale (thousands of VMs and enough load to fill even the fastest NIC
cards or load any storage cluster with ease)

	Data plane with HTTP traffic load:

	Can load the data plane with one OpenStack cloud (single-cloud operations
for L3 East-West scale) or 2 OpenStack clouds (dual-cloud operations with
one cloud hosting the HTTP servers and the other loading HTTP traffic for
L3 North-South scale testing)

	Real HTTP servers (Nginx) running in real Linux images (Ubuntu 14.04)

	Can specify any number of tenants, routers and networks

	Can specify any number of HTTP servers per tenant (as many as your cloud
can handle)

	High performance and highly scalable HTTP traffic generators to simulate
huge number of HTTP users and TCP connections (hundreds of thousands to
millions of concurrent and active connections)

	Overall throughput aggegation and loss-less millisecond-precision latency
aggregation for every single HTTP request (typically millions per run)

	Traffic shaping to specify on which links traffic should flow

	Can support periodic reporting and aggregation of results

	Storage load:

	VM-level Cinder volume (block storage) or Ephemeral disk file I/O
performance measurement using FIO running inside VMs (not bare metal)

	Supports random and sequential file access mode

	Supports any mix of read/write

	Supports fixed load (e.g. 1000 IOPs/VM) or highest load measurement
(KloudBuster will increase the load until latency spikes)

	IOPs, bandwitdh and loss-less millisecond-precision latency aggregation
for every IO operation (typically millions per run)

	User configurable workload sequence

	Support for creating cinder volumes with custom volume types and associated QOS specs

	Supports automated scale progressions (VM count series in any multiple
increment) to reduce dramatically scale testing time

	Highly efficient and scalable metric aggregation

	Automatic cleanup upon termination

	Regular expression based cleanup script (OpenStack Resources Cleanup)

	KloudBuster server mode to drive scale test:

	from any browser (KloudBuster Web UI)

	or from any external programs (KloudBuster REST API)

	Aggregated results provide an easy to understand way to assess the scale of
the cloud under test

	KloudBuster VM image pre-built and available from the OpenStack Community App
Catalog (https://apps.openstack.org/)

Diagrams describing how the scale test resources are staged and how the
traffic flows are available in Architecture.

Scale results are available in json form or in html form with javascript
graphical charts generated straight off the tool.

Examples of results are available in Gallery.

New in Release 7

	The KloudBuster Docker container now includes the KloudBuster VM image for easier
setup (no more need to install/uplaod the VM image separately)

	Supports more recent OpenStack releases with newer API versions (Newton, Ocata)

Limitations and Non-Goals

	Requires Neutron networking (does not support Nova networking)

	Only supports HTTP and storage traffic in this version

Unlike some other scaling test frameworks, KloudBuster does not attempt to:

	Provide a scale test framework that works across different cloud
technologies (OpenStack + AWS + Google Cloud + …) - we are only
focusing on OpenStack

	Provide a scale test framework that is flexible and programmable to do
everything - we just focus on opinionated and well targeted performance
and scale areas with sensible use cases and available in a fully
integrated and easy to consume packaged format

	Replace bare metal and domain specific native performance and scale
frameworks (line level traffic generators, ceph specific performance and
scale tools…)

Contributions and Feedbacks

If you are interested in OpenStack Performance and Scale, contributions and
feedbacks are welcome!

If you have any feedbacks or would like to contribute,
send an email to openstack-discuss@lists.openstack.org with a ‘[kloudbuster]’
tag in the subject.

Licensing

KloudBuster is licensed under the Apache License, Version 2.0 (the “License”).
You may not use this tool except in compliance with the License. You may obtain
a copy of the License at http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed
under the License is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.

KloudBuster VM images contain multiple open source license components:

	nginx: BSD License (http://nginx.org/LICENSE)

	wrk2: Apache License 2.0
(https://raw.githubusercontent.com/giltene/wrk2/master/LICENSE)

	Redis: BSD License (http://redis.io/topics/license)

	FIO: GPL v2 (https://raw.githubusercontent.com/axboe/fio/master/MORAL-LICENSE)

Although the VM image includes a binary copy of the FIO code, it does not
include the source code used to build it. In accordance to the GPL V2 license
related to the inclusion of binary copies of FIO, the source code used to build
the FIO binary copy was not modified and can be found directly at
https://github.com/axboe/fio or can be obtained by email request to the
maintainer of KloudBuster.

Links

	Complete documentation: https://kloudbuster.readthedocs.io/

	KloudBuster REST API documentation Preview [https://htmlpreview.github.io/?https://opendev.org/x/kloudbuster/src/branch/master/doc/source/_static/kloudbuster-swagger.html]

	Source: https://opendev.org/x/kloudbuster

	Supports/Bugs: http://launchpad.net/kloudbuster

	Mailing List: kloudbuster-core@lists.launchpad.net

Architecture

Data Plane Scale Test

Although many types of traffic can run on an OpenStack data plane, KloudBuster
focuses on measuring HTTP traffic scale on any OpenStack cloud because it is a
well understood and very popular traffic type and there are many great open
source tools that can scale to the task and can be leveraged to implement the
HTTP scale test.

East-West Data Plane Scale Test

East-West traffic refers to the traffic that is exchanged between VM instances
that run inside the same cloud. Such traffic can involve:

	Only packet switching if the 2 end points belong to the same Neutron network
(that is the packets do not have to go through a router) - often called L2
East-West

	Packet routing if the 2 end points belong to different Neutron networks
(packets have to go through router) - often called L3 East-West

The KloudBuster data plane scale test exercises L3 East-West traffic by running
a set of HTTP servers in their respective tenant private network and a set of
HTTP traffic generators in a client tenant network with HTTP traffic flowing
from the client tenant network to the various server networks through the
corresponding server router as illustrated in the following diagram:

[image: _images/kb-http-east-west.png]
The KloudBuster App typically runs outside the cloud under test on any server
that has a python interpreter (MacBook, Linux workstation…) with the
requirement to have access to the OpenStack API of the cloud under test.

The KloudBuster app basically reads the requested scale config (which contains
parameters such as test duration, how many HTTP servers are to be used, how many
tenants, networks and routers, how many clients, rate of HTTP requests…),
stages the resources using the OpenStack API, orchestrates the start of the
test, collects then aggregates all the results, then cleans up the resources.

Each HTTP traffic generator instance runs in a VM and is capable of simulating a
large number of HTTP clients that will send HTTP requests to the same HTTP
server instance at a configurable rate (there is a 1:1 mapping between each
client VM and server VM).

Orchestration and results collection is done through the Redis server which runs
in the first staged VM. Many scale tools use SSH to drive the test agents and
SSH has shown to be hard to scale beyond a few hundred sessions while a solution
based on Redis can scale very easily to thousands of end points. Another
important benefit of using a Redis server is that the scale test only requires 1
floating IP (for the Redis server) since all communication to the client VMs are
performed on the internal network using private addresses. Using SSH directly to
the client VMs would require a lot of floating IPs or would require a proxy
which makes the solution even more brittle.

Rack to Rack Data Plane Scale

By default KloudBuster will rely on the Nova scheduler to place the various
client and server VMs. As a result these VMs will be load balanced across all
servers and causing the data path of the HTTP traffic to be quite random. This
can be good to measure the scale on a random traffic pattern but sometimes it is
more interesting to shape the HTTP traffic can be shaped to follow certain
paths.

One good example is to assess the scale of the data plane across racks since
most deployments involve the use of a top of rack switch to service a
potentially large number of servers in each rack. For that purpose, KloudBuster
provides a way to specify the placement of client and server VMs using specific
availability zones as illustrated in the following diagram:

[image: _images/kb-http-rack-rack.png]
The client VMs are placed in 1 rack while the server VMs are placed in a set of
different racks. Such arrangement will cause the traffic to flow exclusively
between these racks, allowing a good measurement of the data plane capabilities
of each rack.

North South Data Plane Scale Test

The North South traffic refers to traffic flowing between external sources and
VMs running in the cloud. Such traffic follows a very different path than
East-West traffic as it is generally always routed and requires the used of IP
address translation (SNAT and DNAT). One exception to this is the use of a
provider network which may avoid routing and NAT completely.

KloudBuster provides a option to test the North-South data plane traffic by
separating the client VMs and server VMs into 2 different OpenStack clouds.

[image: _images/kb-http-north-south.png]
In this mode, KloudBuster will stage and orchestrate the test on 2 distinct
clouds.

Storage Scale Test

The storage scale test is a relatively simpler version of the data plane scale
test as it only involves 1 tenant, 1 network and 1 router. Each test VM runs one
instance of the FIO test client (FIO [https://github.com/axboe/fio] which is a
widely adopted open source storage test client).

[image: _images/kb-storage.png]
VM staging, storage plumbing (using Cinder or Nova for ephemeral disks) is done
by the KloudBuster app using OpenStack APIs. Because the Cinder API abstracts
the storage back-end, it is agnostic of the technology used (Ceph, EMC…).
After the test, all resources (volumes, VMs, network, router) are cleaned up in
the proper order.

Progression Runs

VM staging is a very lengthy phase of any scale test especially when dealing
with scales of hundreds or thousands of VMs.

Progression runs are a very convenient feature as it allows to produce result
for series in a much shorter time by reusing the same set of staged VMs and
iterating the scale test to produce measurements at different scale level.

For example, to get storage performance measurement for 100 to 1000 VMs in
increments of 100, would require staging and unstaging 100+200+300+….+1,000 =
5,500 VM Instances without progression runs while it would only require staging
1,000 instances with VM reuse.

Latency and Distributed Latency at Scale

Latency is a critical metric and reporting correctly latency at scale in a
distributed environment is a difficult problem.

An example of HTTP scale test could simulate 1 million HTTP users sending a
combined 100,000 HTTP requests per second for 1,000 seconds across say 1,000
HTTP servers and 1,000 HTTP traffic generators. A good characterization of how
well a cloud supporting these 1,000 HTTP servers behaves is not only to measure
the actual combined HTTP requests per seconds achieved (e.g. 70,000 HTTP
request/per second) but also the latency of these HTTP requests with a
precision of 1 millisecond. For this kind of scale, the only proper way to
measure latency is to have the complete latency distribution percentile for all
70,000 * 1,000 = 70 million HTTP operations. The problem is that these 70 M
operations are distributed across 1,000 client VMs and as such each traffic
generator has only the latency distribution of those requests issued locally
(or about 70,000 HTTP operations per VM).

Similarly, assessing the storage scale of 500 VMs doing 400 IOPs each results
in tracking the latency of a combined 200K IO operations per second. A mere
10-minute run results in tracking the latency for over 100M IO operations,
distributed across 500 VMs.

Many scaling tools take the shortcut of only reporting an average per client VM
(or even min or max - each client only has to report a small number of metrics
per run). The aggregation of all these averages makes the reported result
(average of averages, min/max of averages…) very weak because it completely
loses sight of outliers which is precisely the type of detail you need to assess
accurately the scale of a large distributed system.

To solve that problem, KloudBuster uses the HdrHistogram [https://github.com/HdrHistogram] open source library to do loss-less
compression/decompression of full latency histograms on the fly in a highly
scalable way.

Gallery

This page has links to examples of scale test reports in HTML format generated
by KloudBuster. These reports were generated within minutes after starting the
scale test from a bare bone OpenStack cloud (not running anything). Click on
the thumbnail images to view the result HTML file in your browser (you will
need access to the Internet to view these files as they reference multiple Java
script libraries in CDN).

Sample HTTP Scale Report

The following report shows an HTTP scale run with results for 1 to 20 HTTP
servers (running in as many server VMs) in increment of 5, where each HTTP
server is receiving HTTP requests from 1 HTTP traffic generator that runs in a
separate VM and emulates 1,000 users sending 1 request per second each (for a
total of 1000 requests per second per HTTP server). The topology used for the
test is 1 tenant, 1 router, 4 networks and 5 HTTP servers per network. Each
iteration is programmed to run for 30 seconds. This scale settings can be
viewed in the Configuration tab.

The table shows the results for each iteration step, with the requested and
measured RPS (HTTP requests per second) and the corresponding aggregated
download throughput (the sum of all downloads for all clients).

Each line in the chart represents the latency distribution for one load level
(or iteration in the progression). Lines can be individually
shown/hidden by clicking on the corresponding legend item.

For example, the largest scale involves 20,000 simultaneous users sending an
aggregate of 18,621 HTTP requests per second and the latency chart tells us
that 99.9% of these 18,621 requests are replied within 34ms, which is actually
excellent.

Note that this test is configured to reuse HTTP connections meaning that we do
not have the overhead of creating a new TCP connection for every HTTP request.
This also means that this cloud had 20,000 TCP active connections at all times
during the scale test.

[image: _images/kb-http-thumbnail.png]
 [https://htmlpreview.github.io/?https://opendev.org/x/kloudbuster/src/branch/master/doc/source/gallery/http.html]

Sample HTTP Monitoring Report

The report below shows an HTTP monitoring run with 15 HTTP servers where each
HTTP server is receiving HTTP requests from 1 HTTP traffic generator that runs
in a separate VM and emulates 1,000 users sending 1 request per second each
(for a total of 1000 requests per second per HTTP server). The topology used
for the test is 1 tenant, 1 router, 3 networks and 5 HTTP servers per network.
The total duration is set to 300 seconds. This scale settings can beviewed in
the Configuration tab.

This stacked chart updates in real time by scrolling to the left and shows
how the latency of HTTP requests evolves over time for each percentile group
(50%, 75%, 90%, 99%，99.9%， 99.99%, 99.999%). Lines can be individually
shown/hidden by clicking on the corresponding legend item.

The compute node where the HTTP servers run is protected against individual
link failures by using a link aggregation with 2 physical links connected to
2 different switches.

At 12:19:53, one of the 2 physical links is purposely shut down. As can be seen,
the latency spikes as high as 1664 msec and returns to normal after about 10
seconds.

[image: _images/kb-http-monitoring.png]

Sample Storage Scale Report

This is a report for a storage scale test using the default workload suite with
a progression run from 1 VM to 20 VMs in increment of 5, and 30 second run per
iteration. This results in 6 tabs of results (1 per workload). The mixed
read/write tabs further split in 2 sub tabs (1 for read and 1 for write
results).

The random read tab shows that each VM could achieve its requested 100 IOPs
across the progression. The lines represent the latency value at given
percentile and can be individually shown/hidden by clicking the corresponding
legend item. As an example, 20 VMs represents a combined 2,000 IOPs measured
for a total of 60,000 random read operations. The latency line tells us that
99.9% of these 60,000 read operations are completed within 1.576 msec.

[image: _images/kb-storage-thumbnail.png]
 [https://htmlpreview.github.io/?https://opendev.org/x/kloudbuster/src/branch/master/doc/source/gallery/storage.html]The sequential write results are more challenging as they show that the VMs
cannot achieve their requested write bandwidth (60MB/s) and can only get 49MB/s
each when there are 20 of such VMs. The latency lines also reflect that stress
by peaking at 500 ms for 99.99% of all write operations (although latency is
not nearly as critical for sequential access than for random access).

Usage and Quick Start Guides

KloudBuster User Interfaces

KloudBuster provides 3 interfaces, the easiest being the Web User Interface.
It offers the most user friendly interface and needs the least learning to get
started. CLI is the traditional way to run applications. It has the most
comprehensive feature sets when compared to the other methods. REST API
gives another way to access and control KloudBuster from another application.

The Web UI is fully implemented on top of the REST API.

OpenStack Cloud Pre-Requisites

OpenStack cloud pre-requisites to run KloudBuster:

	Neutron networking

	Admin access to the cloud under test (non-admin might work with some
tweaks and limitations)

	3 available floating IPs if running the HTTP data plane scale test

	2 available floating IPs if running the Storage scale test

KloudBuster Installation Options

There are 4 different ways to install KloudBuster:

	use a pre-built Docker container (recommended)

	use a pre-built VM image (if you prefer to run the KloudBuster application in a VM and do not need CLI)

	install from PyPI (if you prefer to use pip install)

	install directly from GitHub (git clone, for code development or if you want to browse the code)

Users of KloudBuster who prefer to use the CLI or who prefer to run KloudBuster
locally on their workstation or laptop can use the PyPI based installation
(pip install) or the Docker container.

Docker container, Web Service and PyPI based installation will satisfy most use cases
and are the recommended ways for running KloudBuster under production environments
or through an automated or scheduled job.

Quick Start Guides

	KloudBuster Docker Container Quick Start Guide
	Prerequisites

	1. Pull latest Docker container image

	2. Get the openrc file from your OpenStack Horizon dashboard

	3. Running the KloudBuster CLI

	5. Running KloudBuster as a WebUI/REST Server

	KloudBuster Pip Install Quick Start Guide
	1. Install pip and the python virtualenv (if not installed already)

	2. Install KloudBuster in a virtual environment

	3. Upload the KloudBuster VM image

	4. Download the openrc file

	5. Running the KloudBuster CLI

	6. Running KloudBuster as a WebUI/REST Server

	KloudBuster VM Application Quick Start Guide
	1. Upload the KloudBuster VM image

	2. Create a Neutron tenant router and network

	3. Create a Security Group

	4. Launch the KloudBuster VM Application

	5. Associate a floating IP

	6. Connect to the web UI with a browser

	7. Download the openrc file

	8. Login to KloudBuster

	KloudBuster Git Quick Start Guide
	1. Install Dependencies and Clone Git Repository

	2. Upload the KloudBuster VM image

	3. Download the openrc file

	4. Running the KloudBuster CLI

	5. Running KloudBuster as a WebUI/REST Server

Using the KloudBuster Web UI

Using any browser, point to the provided URL. You will get a Login page where
you will need to enter:

	The type of scale test (HTTP data plane or storage)

	The location of the openrc file for the cloud under test and the corresponding
OpenStack password

You could modify the scale test configuration options or simply start the scale
test with the default scale configuration. Click on Stage button to instruct
KloudBuster to stage all the OpenStack resources. This can take time depending
on how many VMs are requested and how fast is the cloud under test.

Once staging is done, click on the Run button to run the scale test.

Interacting with the KloudBuster REST Interface

REST Documentation

Once the server is started, you can use different HTTP methods
(GET/PUT/POST/DELETE) to interact with the KloudBuster REST interface using the
provided URL at port 8080.

	KloudBuster REST API Documentation Preview [https://htmlpreview.github.io/?https://opendev.org/x/kloudbuster/src/branch/master/doc/source/_static/kloudbuster-swagger.html]

	REST API Documentation (Swagger yaml) [https://opendev.org/x/kloudbuster/src/branch/master/doc/source/_static/kloudbuster-swagger.html]

The following curl examples assume the server runs on localhost.

Display version and retrieve default configuration

To get the current version and retrieve the default configuration and copy to a file:

> curl http://localhost:8080/api/kloudbuster/version
7.1.1
> curl http://localhost:8080/api/config/default_config >default_config

 ...

Create a new Kloudbuster session

Before running any benchmark, the first step is to create a new session:

The body of the REST request msut have the following fields:

{
 'credentials': {'tested-rc': '<STRING>',
 'testing-rc': '<STRING>'},
 'kb_cfg': {<USER_OVERRIDED_CONFIGS>},
 'topo_cfg': {<TOPOLOGY_CONFIGS>},
 'tenants_cfg': {<TENANT_AND_USER_LISTS_FOR_REUSING>},
 'storage_mode': true|false
}

List of fields and content:

	credentials (mandatory)

	tested-rc (mandatory) contains the openrc variables (string containing the list of variables separated by n)

	testing-rc (optional) only needed in case of dual cloud testing (HTTP only)

	kb_cfg (mandatory) a string containing the Kloudbuster configuration to use (json)

	topo_cfg (optional) a string containing the topology configuration (json)

	tenants_cfg (optional) a string containing the list of tenants and users to use (json)

	storage_mode (mandatory) true for storage benchmark, false for HTTP benchmark

Example of configuration:

Content of a standard openrc file that we store in a variable
OPENRC="export OS_CACERT=/root/openstack-configs/haproxy-ca.crt
export OS_AUTH_URL=https://10.0.0.1:5000/v3
export OS_USERNAME=admin
export OS_PASSWORD=55DgmREFWenMqkxK
export OS_REGION_NAME=RegionOne
export OS_PROJECT_NAME=admin
export OS_PROJECT_DOMAIN_NAME=default
export OS_USER_DOMAIN_NAME=default
export OS_IDENTITY_API_VERSION=3"

Example of simple Kloudbuster configuration
KBCFG="{client:{storage_stage_configs:{ vm_count: 1, disk_size: 50, io_file_size: 1},
storage_tool_configs:{[description: 'Random Read', mode: 'randread', runtime: 30,
block_size: '4k', iodepth: 4]}}}"

REST request body in json format
BODY="{'credentials': {'tested-rc': $OPENRC},
 'kb_cfg': $KBCFG,
 'storage_mode': true}"

Create the Kloudbuster session with above configuration:

> curl -H "Content-Type: application/json" -X POST -d "$BODY" http://localhost:8080/api/config/running_config

Note that this request only updates the running configuration and does not start any benchmark.
It will return a session ID that needs to be passed to subsequent REST requests.

Start a storage benchmark using the running configuration

SESSION_ID is the id returned from the /api/config/running_config POST request.

> curl -H "Content-Type: application/json" -X POST http://localhost:8080/api/kloudbuster/run_test/$SESSION_ID

Get the KloudBuster VM Image

KloudBuster needs one “universal” test VM image
(referred to as “KloudBuster image”) that contains the necessary test software.
The KloudBuster image is then instantiated by the KloudBuster application in
potentially large number of VMs using the appropriate role (HTTP server, HTTP
traffic generator…).
Upload of the VM image to OpenStack is automatic with the KloudBuster container (as the VM image is
included in the container itself). For non container usages, it requires building a VM image or obtaining
it from the Internet (see below).

Note

The same KloudBuster VM image can be instantiated for running the test functions
(HTTP servers, HTTP traffic generators, file access tools) and for running KloudBuster as a web service.

Extract the KloudBuster VM image to the local directory

This requires Docker to be installed and requires Internet access to DockerHub.

Use the kb_extract_img_from_socker.sh script to download a copy of the VM image from DockerHub.
By default the script will download the VM image with the same version as the installed
KloudBuster package.

kb_extract_img_from_socker.sh

Once extracted, you can let KloudBuster upload the VM image for you on a subsequent run (simplest and recommended) or the VM image can be manually uploaded to OpenStack using Horizon or the glance API.
KloudBuster by default will look into the root of the KloudBuster package or into the current directory to
check if the VM image file is present, and automatically upload it if it is not already in OpenStack.

Upload the KloudBuster VM image using the Horizon Dashboard (optional)

From the dashboard, create a new image and select “Image File” and select the VM image file.

The name of the image in Glance must match exactly the image name (without the .qcow2 extension, e.g. “kloudbuster-7.0.0”).

Upload the KloudBuster VM image using the Glance CLI (optional)

This assumes that you have installed the OpenStack Glance API and have sourced
the appropriate openrc file.

To upload the image from a local copy of that image using the Glance CLI:

glance image-create --file kloudbuster-7.0.0.qcow2 --disk-format qcow2 --container-format bare --visibility public --name kloudbuster-7.0.0

KloudBuster Docker Container Quick Start Guide

The recommended way to install KloudBuster is using Docker as it is the simplest.

Prerequisites

This quick start guide assumes you have already installed Docker. All command
line examples below are based on Linux (which could be either native or in a
VM) and require Internet access to Docker Hub.

1. Pull latest Docker container image

KloudBuster is available as a container in Docker Hub at
berrypatch/kloudbuster [https://hub.docker.com/r/berrypatch/kloudbuster/]

$ docker pull berrypatch/kloudbuster

2. Get the openrc file from your OpenStack Horizon dashboard

Using the Horizon dashboard, download the openrc file (Project|Compute|API
Access then click on “Download OpenStack RC File”). It is best to use the
admin user to run KloudBuster as much as possible (otherwise there are
restrictions on what you can do). Instructions below assume a copy of that
file is saved under the local directory with the name “admin-openrc.sh”

We assume in the below example that you have an openrc file available called
“admin-openrc.sh” in the local directory and that the corresponding OpenStack
password is “admin”.

3. Running the KloudBuster CLI

If you do not really need a Web UI or REST interface, you can simply run
KloudBuster scale test straight from CLI in the container.

docker run -v $PWD:/opt/kb --rm berrypatch/kloudbuster kloudbuster --version
docker run -v $PWD:/opt/kb --rm berrypatch/kloudbuster kloudbuster -h

Run the default HTTP data plane scale test

The default HTTP scale test is described here.

docker run --rm -v $PWD:/opt/kb berrypatch/kloudbuster kloudbuster --rc /opt/kb/admin-openrc.sh --passwd admin

Run the default storage scale test

The default storage scale test is described here.

docker run --rm -v $PWD:/opt/kb berrypatch/kloudbuster kloudbuster --rc /opt/kb/admin-openrc.sh --passwd admin --storage

Run KloudBuster with a custom configuration

To get a copy of the default KloudBuster configuration and store it to a file
called “kb.cfg”:

docker run --rm berrypatch/kloudbuster kloudbuster --show-config >/opt/kb/kb.cfg
less kb.cfg

You can then edit kb.cfg and modify it appropriately. To run KloudBuster with
the custom configuration, simply pass it to container after mapping the host
local directory to “/opt/kb” (for example):

docker run --rm -t -v $PWD:/opt/kb berrypatch/kloudbuster kloudbuster --rc /opt/kb/admin-openrc.sh --passwd admin --config /opt/kb/kb.cfg

5. Running KloudBuster as a WebUI/REST Server

By default KloudbBuster will listen on port 8080 in the container. This port
must be mapped to a host level port using the -p argument. For example, to use
the same port number at the host level:

docker run -d -p 8080:8080 --rm berrypatch/kloudbuster kb_start_server

The first port number is the host listen port (any port of your choice) while
the second one after the column is the container listen port (always 8080 for
KloudBuster). For example, to use port 9090 on the host and map it to the
KloudBuster port in the container, you would use -p 9090:8080

To stop the KloudBuster container, you can use the “docker kill <id>” command.

Assuming the host port used is 8080, the Web UI URL to use from any browser is:

http://<host_ip>:8080

The KloudBuster REST base URL is the above URL with “/api” appended:

http://<host_ip>:8080/api

How to use the Web UI

How to use the REST interface

KloudBuster Pip Install Quick Start Guide

KloudBuster is available in the Python Package Index (PyPI)
KloudBuster PyPI [https://pypi.org/project/KloudBuster]
and can be installed on any system that has python 2.7.

1. Install pip and the python virtualenv (if not installed already)

You will need to have python 2.7, pip, and some dependencies installed
before installing KloudBuster depending on the operating system at the installation site.
These pre-requisites can be skipped if the corresponding dependencies are already installed.

Ubuntu/Debian based:

$ sudo apt-get install python-dev python-pip python-virtualenv libyaml-dev

RHEL/Fedora/CentOS based:

$ sudo yum install gcc python-devel python-pip python-virtualenv libyaml-devel

MacOSX:

$ # Download the XCode command line tools from Apple App Store
$ xcode-select --install
$ sudo easy_install pip
$ sudo pip install virtualenv
$
$ # If you need to run KloudBuster Web UI from PyPI installation,
$ # coreutils needs to be installed using Homebrew.
$ # Refer here for the steps to install Homebrew on Mac:
$ # http://brew.sh/
$ brew install coreutils

2. Install KloudBuster in a virtual environment

Create a virtual environment for Python, and install KloudBuster:

$ virtualenv vkb
$ source vkb/bin/activate
$ pip install kloudbuster

Alternatively, if you have
virtualenvwrapper [https://virtualenvwrapper.readthedocs.org] installed:

$ mkvirtualenv kloudbuster
$ pip install kloudbuster

Note

“A Virtual Environment is a tool to keep the dependencies required by
different projects in separate places, by creating virtual Python
environments for them.” It is optional but recommended. We could use:

$ sudo pip install kloudbuster

instead if isolation among multiple Python projects is not needed.

To verify kloudbuster is installed properly, just type:

kloudbuster --help

3. Upload the KloudBuster VM image

Follow the steps to upload the KloudBuster VM image to
the OpenStack cloud under test.

4. Download the openrc file

Using the Horizon dashboard, download the openrc file (Project|Compute|API
Access then click on “Download OpenStack RC File”). It is best to use the
admin user to run KloudBuster as much as possible (otherwise there are
restrictions on what you can do).

5. Running the KloudBuster CLI

Run the default HTTP data plane scale test

The default HTTP scale test is described here.

kloudbuster --rc admin-openrc.sh --passwd admin

Run the default storage scale test

The default storage scale test is described here.

kloudbuster --rc admin-openrc.sh --passwd admin --storage

Run KloudBuster with a custom configuration

To get a copy of the default KloudBuster configuration and store it to a file
called “kb.cfg”:

kloudbuster --show-config >kb.cfg
less kb.cfg

You can then edit kb.cfg and modify it appropriately. To run KloudBuster with
the custom configuration:

kloudbuster --rc admin-openrc.sh --passwd admin --config kb.cfg

6. Running KloudBuster as a WebUI/REST Server

kb_start_server&

You should see a message similar to the one below, which indicates the server
is up running:

Starting server in PID 27873
serving on 0.0.0.0:8080, view at http://127.0.0.1:8080

By default KloudbBuster will listen on port 8080.
The KloudBuster Web UI URL to use from any browser is:

http://<host_ip>:8080

The KloudBuster REST base URL is the above URL with “/api” appended:

http://<host_ip>:8080/api

How to use the Web UI

How to use the REST interface

KloudBuster VM Application Quick Start Guide

The pre-built KloudBuster qcow2 VM image contains the KloudBuster Web server
and is ready to service HTTP and REST requests once up and running. To get the
KloudBuster Web server running in any OpenStack cloud:

1. Upload the KloudBuster VM image

Follow the steps to upload the KloudBuster VM image
to the OpenStack cloud that will host your KloudBuster web server

Note

The KloudBuster web server can run in the cloud under test or in another
OpenStack cloud.

2. Create a Neutron tenant router and network

If necessary, and as for any VM-based web server application bring up, create
and configure the Neutron router and network where the KloudBuster web server
VM instance will be attached.
You can also reuse an existing tenant network and router.

3. Create a Security Group

Create or reuse a security group which allows ingress TCP traffic on port 8080.

4. Launch the KloudBuster VM Application

Launch an instance using the KloudBuster image with the proper security group,
and connect to the appropriate network. Leave the Key Pair as blank, as we
don’t need the SSH access to this VM.

5. Associate a floating IP

Associate a floating IP to the newly created VM instance so that it can be
accessible from an external browser

6. Connect to the web UI with a browser

The Web UI URL to use from any browser is:

http://<floating_ip>:8080

The base URL to use for REST access is:

http://<floating_ip>:8080/api

7. Download the openrc file

Using the Horizon dashboard, download the openrc file (Project|Compute|API
Access then click on “Download OpenStack RC File”). It is best to use the
admin user to run KloudBuster as much as possible (otherwise there are
restrictions on what you can do).

8. Login to KloudBuster

Follow instructions on how to use the web UI.

KloudBuster Git Quick Start Guide

This is the default installation method for code development.

It is recommended to run KloudBuster inside a virtual environment.

1. Install Dependencies and Clone Git Repository

Quick installation on Ubuntu/Debian

$ sudo apt-get install build-essential python-dev python-virtualenv git git-review qemu-utils
$ # create a virtual environment
$ virtualenv ./vkb
$ source ./vkb/bin/activate
$ git clone https://opendev.org/x/kloudbuster.git
$ cd kloudbuster
$ pip install -e .
$ pip install -r requirements-dev.txt

Quick installation on RHEL/Fedora/CentOS

$ sudo yum install gcc python-devel python-virtualenv git qemu-img
$ # create a virtual environment
$ virtualenv ./vkb
$ source ./vkb/bin/activate
$ git clone https://opendev.org/x/kloudbuster.git
$ cd kloudbuster
$ pip install -e .
$ pip install -r requirements-dev.txt

Quick installation on MacOSX

KloudBuster can run natively on MacOSX.

First, download XCode from App Store, then execute below commands:

$ # Download the XCode command line tools
$ xcode-select --install
$ # Install pip
$ sudo easy_install pip
$ # Install python virtualenv
$ sudo pip install virtualenv
$ # create a virtual environment
$ virtualenv ./vkb
$ source ./vkb/bin/activate
$ git clone https://opendev.org/x/kloudbuster.git
$ cd kloudbuster
$ pip install -e .
$ pip install -r requirements-dev.txt

If you need to run the KloudBuster Web UI you need to install coreutils
(you can skip this step if you do not run the KloudBuster Web server):

$ # If you need to run KloudBuster Web UI,
$ # coreutils needs to be installed using Homebrew.
$ # Refer here for the steps to install Homebrew on Mac:
$ # http://brew.sh/
$ brew install coreutils

Verify installation

To verify kloudbuster is installed, from the root of the kloudbuster repository type:

kloudbuster --version

2. Upload the KloudBuster VM image

Follow the steps to upload the KloudBuster VM image
to the OpenStack cloud under test.

3. Download the openrc file

Using the Horizon dashboard, download the openrc file (Project|Compute|API
Access then click on “Download OpenStack RC File”). It is best to use the
admin user to run KloudBuster as much as possible (otherwise there are
restrictions on what you can do). The examples below assume the openrc file is
saved at the root of the kloudbuster git repository with the name
“admin-openrc.sh” and the password is “admin”.

4. Running the KloudBuster CLI

Run the default HTTP data plane scale test

The default HTTP scale test is described here.

python kloudbuster/kloudbuster.py --rc admin-openrc.sh --passwd admin

Run the default storage scale test

The default storage scale test is described here.

kloudbuster --rc admin-openrc.sh --passwd admin --storage

Run KloudBuster with a custom configuration

The default KloudBuster configuration file is in cfg.scale.yaml. You can make a
copy of it in “kb.cfg”:

cp kloudbuster/cfg.scale.yaml kb.cfg

You can then edit kb.cfg and modify it appropriately. To run KloudBuster with
the custom configuration:

kloudbuster --rc admin-openrc.sh -passwd admin --config kb.cfg

5. Running KloudBuster as a WebUI/REST Server

kb_start_server&

You should see a message similar to the one below, which indicates the server
is up running:

Starting server in PID 27873
serving on 0.0.0.0:8080, view at http://127.0.0.1:8080

By default KloudbBuster will listen on port 8080.

How to use the Web UI

How to use the REST interface

To terminate the server, simply use the kill command on the server pid.

Configuration Options

Default HTTP Scale Test

The default HTTP scale test will run on a single cloud and perform the following steps:

	Create 2 tenants, 2 users, and 2 routers;

	Create 1 shared network for both servers and clients tenants

	Create 1 VM running the Redis server (for orchestration)

	Create 1 VM running as an HTTP server

	Create 1 VM running the HTTP traffic generator (defaults to 1000 connections,
1000 requests per second, and 30 seconds duration)

	Measure/aggregate throughput and latency

	Bring down and cleanup

Default Storage Scale Test

The default storage scale test will use the following settings:

	Create 1 tenant

	Create 1 router

	Create 1 private network

	Create 1 VM and attach a 10 GB Cinder volume to it

	
	Perform the default storage workload sequence:

	
	
	random access 4KB block size, IO depth 4, 100 IOPs for 30 seconds

	
	100% read

	100% write

	70% read, 30% write

	
	sequential access 64KB block size, IO depth 64, 60 MB/sec for 30 seconds

	
	100% read

	100% write

	70% read, 30% write

	Measure/aggregate IOPs, throughput and latency

	Bring down and cleanup

The run should take a few minutes (depending on how fast the cloud can
create the resources) and you should see the actions taken by KloudBuster
displayed on the console. Once this minimal scale test passes, you can tackle
more elaborate scale testing by increasing the scale numbers or providing
various traffic shaping options. See below sections for more details about
configuring KloudBuster.

KloudBuster Configuration File

To create a custom scale test configuration, make a copy of the default
configuration (this can be obtained by redirecting the output of
–show-config to a new file, as described in the quick start guide)
and modify that file to satisfy our own needs.
The configuration file follows the yaml syntax and contains options
that are documented using yaml comments.

Note

The default configuration is always loaded by KloudBuster and
any default option can be overridden by providing a custom configuration
file that only contains modified options. So you can delete all the lines
in the configuration file that you do not intend to change

Once modified, you can pass the configuration file to KloudBuster using the
–config option.

General Configuration Options

Each item in the configuration file is well documented. Below is
just a quick-start on some important config items that need to be paid more
attention to.

	vm_creation_concurrency

This controls the level of concurrency when creating VMs. There is no
recommended values, as it really varies and up to the cloud performance.
On a well-deployed cloud, you may able to push the values to more than 50.
The default value of 5 concurrent VM creations should be OK for most deployments.

Note

For deployment prior to Kilo release, you may hit this
bug [https://bugs.launchpad.net/neutron/+bug/1194579] if the
concurrency level is too high. Try to lower down the value if
you are hitting this issue.

	server:number_tenants, server:routers_per_tenant,
server:networks_per_router, server:vms_per_network

These are the four key values which controls the scale of the cloud you are
going to create. Depends on how you want the VM to be created, sets these values
differently. For example, if we want to create 180 Server VMs, we could do
either of the following settings:

(1) 30 tenants, 1 router per tenant, 2 networks per router, and 3 VMs per
network (so-called 30*1*2*3);

(2) 20 tenants, 3 routers per tenant, 3 networks per router, and 1 VMs per
network (so-called 20*3*3*1);

	server:secgroups_per_network

Reference Neutron router implementation is using IPTABLES to perform
security controls, which should be OK for small scale networks. This
setting for now is to investigate the upper limit capacity that Neutron
can handle. Keep the default to 1 if you don’t have the concerns on
this part yet.

	client:progression

KloudBuster will give multiple runs (progression) on the cloud under this mode.

If enabled, KloudBuster will start with certain amount of VMs, and put more VMs
into the testing for every iteration. The increment of the VM count is specified
by vm_multiple. The iteration will continue until it reaches the scale defined
in the upper sections, or the stop limit.

The stop limit is used for KloudBuster to determine when to stop the
progression, and do the cleanup if needed earlier.

In the case of HTTP testing:

It is defines as: [number_of_err_packets,
percentile_of_packet_not_timeout(%)]. For example: [50, 99.99] means,
KloudBuster will continue the progression run only if ALL below
conditions are satisfied:

	The error count of packets are less or equal than 50;

	99.99% of the packets are within the timeout range;

In the case of Storage testing:

It is a single integer indicating the degrading percentile. In the mode of
random read and random write, this value indicates the percentile of
degrading on IOPS, while in the mode of sequential read and sequential
write, this value indicates the percentile of degrading on throughput.

Assume the IOPS or throughput per VM is a fixed value, usually we are
expecting higher values when the VM count grows. At certain point where the
capacity of storage is reached, the overall performance will start to
degrade.

e.g. In the random read and random write mode, for example the IOPS is limited to
100 IOPS/VM. In the iteration of 10 VMs, the requested IOPS for the system
is 100 * 10 = 1000. However, the measured IOPS is degraded to only 800 IOPS.
So the degraded percentile is calculated as 800/1000=20% for this set of
data.

HTTP Test Specific Options

	client:http_tool_configs

This section controls how the HTTP traffic will be generated. Below are the two
values which determine the traffic:

Connections to be kept concurrently per VM
connections: 1000
Rate limit in RPS per client (0 for unlimited)
rate_limit: 1000

Each testing VM will have its targeting HTTP server for sending the requests.
Simply to say, connections determines the how many concurrent users that the
tool is emulating, and rate_limit determines how fast the HTTP request will be
sent. If the connections are more than the capacity of the cloud can handle,
socket errors or timeouts will occur; if the requests are sending too fast, you
will likely to have lots of requests responded very slow (will be reflected in
the latency distribution spectrum generated by KloudBuster).

Different cloud has different capacity to handle data plane traffics. The best
practice is to have an estimate first, and get started. In a typical 10GE VLAN
deployment, the line rate is about 9Gbps, or 1.125 GB/s. For pure HTTP traffic,
the effective rate minus the overhead is approximately 80% of the line rate,
which is about 920 MB/s. Each HTTP request will consume 32KB traffic for loading
the HTML page (HTML payload size is configurable), so the cloud capacity is
about 30,000 req/sec. If you are staging a cloud with 20 testing pairs, the
rate_limit for each VM settings will be about (30000 / 20 = 1500).

The capacity for handling connections varies among factors including kernel
tuning, server software, server configs, etc. and hard to have an estimate. It
is simple to start with the same count as the rate_limit to have (1
request/connection) for each VM, and we can adjust it later to find out the
maximum value. If you see socket errors or timeouts, means the scale you are
testing is more than the cloud capacity.

Some other values which are self-explained, and you can change them as needed.

Storage Test Specific Options

	client:storage_stage_configs

This section defines the storage specific configs in the staging phase:

The number of VMs for running storage tests
vm_count: 1
KloudBuster supports to run storage tests on Cinder Volumes or Ephemeral
Disks. Available options to be configured: ['volume', 'ephemeral'].
target: 'volume'
Volumes size in GB for each VM
disk_size: 10
The size of the test file for running IO tests in GB. Must be less or
equal than disk_size.
io_file_size: 1
Optional volume_type for cinder volumes
Do not specify unless using QOS specs or testing a specific volume type
Used to test multibackend support and QOS specs
Must be a valid cinder volume type as listed by openstack volume type list
Make sure volume type is public
If an invalid volume type is specified tool will Error out on volume create
volume_type: cephtype

	client:storage_tool_configs

This section controls how the Storage tests will be performed. All the fields
are self-explained, and you can create your own test case with customized
parameters.

KloudBuster Standard Scale Profile

Standard scale profile definition

Multiple factors can impact data plane scale numbers measured by KloudBuster: VM
count, number of connections per VM, number of requests per seconds per VM,
timeout, etc… To help obtaining quick and easy results without having to
tweak too many parameters, KloudBuster defines an off the shelf default scale
profile.

In the default scale profile for running HTTP load:

	The number of connections per VM is set to 1000;

	The number of requests per seconds per VM is set to 1000;

	The HTTP request timeout is set to 5 seconds;

	The stop limit for progression runs will be error packets greater than 50;

	The size of the HTML page in the server VMs will be 32768 Bytes;

As a reference, KloudBuster can run approximately 21 VMs (with 21,000
connections and 21,000 HTTP requests/sec) and achieve approximately 5 Gbps of
HTTP throughput on a typical multi-node Kilo OpenStack deployment (LinuxBridge +
VLAN, 10GE NIC card).

In the default scale profile for running Storage load:

	A standard set of 6 test cases (random read/write/mixed, sequential
read/write/mixed);

	The IOPS limit per VM is set to 100 for random read/write/mixed test cases,
and Rate limit per VM is set to 60MB/s for sequential read/write/mixed test
cases;

	Block size is set to 4K for random read/write/mixed test cases, and 64K for
sequential read/write/mixed test cases;

	IO Depth is set to 4 for random read/write/mixed test cases, and 64 for
sequential read/write/mixed test cases;

	The stop limit for progression runs is degrading more than 20% of the target;

Note that it is hard to give a reference on storage testing since the
performance varies a lot on different hardware or solutions.

How to run the standard scale profile

In order to perform a run using the default scale profile, set the max VM counts
for the test, enable progression run and leave everything else with their
default values. KloudBuster will start the iteration until reaching the stop
limit or the max scale. Eventually, once the KloudBuster run is finished, the
cloud performance can be told by looking at how many VMs KloudBuster can run to
and by looking at the latency charts.

Steps:

	Enable progression runs:

Running from CLI: Edit the config file, and set
client:progression:enabled to True

Running from Web UI: Navigate to “Interactive Mode” from the top menu
bar, unfold the left panel for detail settings, under “Progression Test”
section, and check the “Progression Test” checkbox.

	Set up the max scale:

The max scale basically means the max VM counts that KloudBuster will try to
reach. In the case of HTTP testing, for a typical 10GE NIC card with VLAN
encapsulation, 25 will be a good value; in the case of Storage testing,
depends on the solution the deployment is using, pick a number from 10 to 25
would usually be fine. Remember you can always adjust it to a more
reasonable value based on your deployment details.

Running from CLI: Edit the config file, and set server:vms_per_network
to a proper value.

Running from Web UI: Navigate to “Interactive Mode” from the top menu
bar, unfold the left panel for detail settings, under “Staging Settings”
section, and set “VMs/Network” to a proper value.

Interpret the results

From the CLI, check the log and find the warning that KloudBuster gave, similar
to this:

WARNING KloudBuster is stopping the iteration because the result reaches the stop limit.

One line before is the json output of last successful run, which has the number
in the “total_server_vms” field.

From the Web UI, in the “Interactive Mode” tab, you will see how many sets of
data are you getting. The second last set of data shows the last successful run,
which has the number in the “Server VMs” column.

Advanced Features

Control the VM Placement

By default, VMs are placed by NOVA using its own scheduling logic. However,
traffic can be shaped precisely to fill the appropriate network links by using
specific configuration settings. KloudBuster can change that behavior, and
force NOVA to place VMs on desired hypervisors as we defined by supplying
the topology file.

The format of the topology file is relatively simple, and group into two
sections. See file “cfg.topo.yaml” for an example.

The “servers_rack” section contains the hypervisors that the server side VMs
will be spawned on, and the “clients_rack” section contains the hypervisors
that the client side VMs will be spawned on. The hypervisor names can be
obtained from Horizon dashboard, or via “nova hypervisor-list”. Note that
the name in the config files must exactly match the name shown in Horizon
dashboard or NOVA API output.

A typical use case is to place all server VMs on one rack, and all client VMs
on the other rack to test Rack-to-Rack performance. Similarly, all server VMs
on one host, and all client VMs on the other host to test the Host-to-Host
performance.

To use this feature, just pass -t <path_to_topo_file> to the kloudbuster
command line.

Note

Admin access is required to use this feature.

Interactive mode

When using the CLI, the “–interactive” option allows to re-run the workloads any number of times
from the prompt after the resources are staged.
This is useful for example to avoid restaging after each run.

Running KloudBuster without admin access

When there is no admin access to the cloud under test, KloudBuster does
support to run and reused the existing tenant and user for running tests.
You have to ask the cloud admin one time to create the resources in advance,
and KloudBuster will create the resources using the pre-created tenant/user.

When running under the tenant/user reusing mode:

	Only one tenant will be used for hosting both server cloud and client
cloud resources;

	Only two users will be used for creating resources, and each cloud has
its own user;

And also there are some limitations that you should aware:

	The VM placement feature will not be supported;

	The flavor configs will be ignored, and the KloudBuster will
automatically pick the closest flavor settings from the existing list;

	KloudBuster will not automatically adjust the tenant quota, and give
warnings when quota exceeded;

See file “cfg.tenants.yaml” for an example. Modify the settings to match your
cloud.

To use this feature, just pass -l <path_to_tenants_file> to the kloudbuster
command line.

Displaying the Results

Results can be saved in a file in json format or in HTML format. The json format
is more appropriate for usage by any post-processing tool or script while the
HTML file is more adapted for human usage.

The KloudBuster Web UI will display the results using charts and tables when the
test is finished running. The KloudBuster CLI provides an option to generate
the HTML file from the results (–html option). It can also generate the HTML
file from the JSON results (–charts-from-json option).

Examples of running KloudBuster

Assuming the OpenStack RC file is stored at ~/admin_openrc.sh, and the
password is “admin”. Running the program is relatively easy, some examples
are given to help get started quickly.

Note

Before going to large scale test, it is strongly recommended to start with
a small scale. The default config is a good point to start with. It will
make sure KloudBuster is talking to the clouds well.

Example 1: HTTP Scale, Single-cloud Mode

Kloudbuster will create both server VMs and client VMs in the same cloud if
only one RC file is provided:

$ kloudbuster --rc ~/admin_openrc.sh --passwd admin

Example 2: HTTP Scale, Dual-cloud Mode, Save results

Assume the cloud for server VMs is ~/admin_openrc1.sh, and the cloud for
client VMs is ~/admin_openrc2.sh. The password for both clouds is “admin”.
Also save the results to a JSON file once the run is finished:

$ kloudbuster --rc ~/admin_openrc1.sh --passwd admin --testing-rc ~/admin_openrc2.sh --testing-passwd admin --json result.json

Example 3: HTTP Scale, Single-cloud Mode, Customized VM placements

$ kloudbuster --rc ~/admin_openrc.sh --passwd admin -t cfg.topo.yaml

Example 4: Storage benchmark, Save results to JSON

$ kloudbuster --rc ~/aio-openrc.sh --passwd lab --storage --json aio.json

OpenStack Resources Cleanup

KloudBuster may exit with resources lingering in the cloud under test when there
are uncaught exceptions or when the configuration file explicitly disables any
resource cleanup upon exit (this option can be useful for debugging for
example).

KloudBuster provides a time saving force_cleanup python script to cleanup
resources created by a previous KlousBuster run. This script can also be used to
cleanup OpenStack resources with a name matching a given regular expression.

Resources in a given selection set are deleted along with their dependencies in
the correct order. For example to delete a router you need to delete first all
the interfaces before you can delete the router. To delete a volume you need to
first detach the volume (if attached) before it can be deleted. Furthermore,
some resource deletions require dependent resources to be actually deleted first
(which can tale more or less time) before they can succeed. A volume detach
command for example can take time and if you do not want long enough the volume
deletion will fail.

The script takes care of all these dependencies and timing considerations.

The current version of the script can delete the following resources with a name
that matches a given regular expression:

	
	Storage

	
	volumes (detach and delete)

	
	Compute

	
	instances

	flavors

	key pairs

	
	Network

	
	security groups

	floating IPs

	routers (including all associated interfaces)

	networks

	
	Keystone:

	
	users

	tenants

In some cases, because of timing reasons, you may have to run the force_cleanup
script a few times to get rid of all selected resources.

How to Select Resources to Delete

Resource list (–file <pathname>)

KloudBuster generates a cleanup log file when it exits without deleting all
resources. This file is a text file with 1 row per resource, where each row has
the following format>:

<resource type>|<resource name>|<uuid>

Example of cleanup log file:

flavors|kb.client|58dededb-4c04-444f-8779-d0487ff08035
flavors|kb.proxy|2613f998-9a77-4f49-bd1b-7cd83c1038cf
keypairs|KBc-T0-U-K|
users|KBc-T0-U|c50be73385a84acdb5bdfa565d2b613c
routers|KBc-T0-U-R0|15678e46-a437-42d1-96a7-a57e9b96edcd
floating_ips|10.23.228.204|7a93a1ba-2356-4dbe-a387-006e90be4462
instances|KB-PROXY|67cb2da6-b05e-40b5-bc8f-df061035b945
instances|KBc-T0-U-R0-N0-I0|ab895ccb-1632-42ed-8fa2-d0dd08b15641
instances|KBc-T0-U-R0-N0-I1|ea416057-3a16-4f1c-875d-f4e0bb5b55c8
instances|KBc-T0-U-R0-N0-I3|a95a9ff9-5c9c-470b-b6a3-a729e0cd7857
instances|KBc-T0-U-R0-N0-I2|aff78e4f-cf59-49c9-81b3-53c9c2417d78
instances|KBc-T0-U-R0-N0-I15|bda2b43e-fc5f-448a-a7ca-f152f2c62bb3
instances|KBc-T0-U-R0-N0-I16|02e93acc-89b8-4bcf-94af-ec2369aee6b5
volumes|KBc-T0-U-R0-N0-V0|ebd5f46e-7cfd-4bd4-a140-196a8cd3df38
volumes|KBc-T0-U-R0-N0-V1|df84e730-1a1c-4b01-bd44-315d7128959a
volumes|KBc-T0-U-R0-N0-V17|5c1b1765-248d-4f08-8b3c-4f43aa9bcc0d
volumes|KBc-T0-U-R0-N0-V18|1c681d85-de43-4407-be97-98cc6a8f5a73
volumes|KBc-T0-U-R0-N0-V19|291edb4a-9a79-40ed-b193-7e3e9b08e1f6
sec_groups|KBc-T0-U-R0-N0-SG0|1a97ee38-bc10-4ca1-b7cc-8da09991595b
tenants|KBc-T0|59d98fa36536490a8746c517b3ed7383
networks|KBc-T0-U-R0-N0|7047d34c-ad77-4453-8d69-5dd41b102159

If such file is provided to the cleanup script using the –file option, only
the resources described in the file will be deleted.

Discovery with Resource name filter (–filter <regex>)

If no cleanup log file is provided, resources are discovered from OpenStack and
selected using a regular expression on the resource name (–filter <regex>). You
can specify any valid python regular expression to select the resource by name.

If you do not specify a cleanup log file nor a filter, the script will discover
all resources with a name starting with “KB” which is the prefix for all
KloudBuster resources.

Some examples (refer to the python regex documentation for a detailed
description of regular expressions):

	Regular expression

	(default) any OpenStack resource with a name starting with “KB

	ext$

	any OpenStack resource with a name starting ending with “ext”

	.*net

	any resource with a name containing “net” in any position

	glance|neutron

	any resource with a name starting with “glance” or “neutron”

Warning

You can of course also specify ‘.*’ to list all resources but you probably
do not want to delete all of them!

Credentials (RC) file (–rc <pathname>)

Specify the openrc file (downloaded from the Horizon API Access page) to provide
the credentials to access OpenStack. Alternatively you can also source that file
from the shell before invoking the force_cleanup.py script.

Dry Run (–dryrun)

The script also provides a dry run mode, meaning that you can just check what
the script would do without actually deleting anything.

Installation and Dependencies

The script is available in the OpenStack KloudBuster repository under
kloudbuster/force_cleanup.py. If you need to run the script outside of the usual
KloudBuster installation, the script requires the usual OpenStack python client
libraries and credentials.py (from the kloudbuster module).
Otherwise, pick one of the kloudbuster installation method to install the script
(the KloudBuster docker container looks to be the simplest).

Known Issues and Limitations

Volumes attached to instances that are no longer present cannot be deleted
thorugh Nova or Cinder APIs. Such volumes will show up as attached to “None”
and in the “in-use” or “available” state from the Horizon dashboard. In this
case, the script will print a warning with the volume ID:

WARNING: Volume 6080fdce-f894-4c41-9bc0-70120e8560a8 attached to an instance that no longer exists (will require manual cleanup of the database)

Cleanup of such volumes will require first setting the attach_status of the
corresponding volume to “detached” in the Cinder database directly. You have
to SSH to the controller host, and login to the MySQL shell:

[root@gg34-2 ~]# mysql cinder
MariaDB [cinder]> UPDATE volumes SET attach_status='detached' WHERE id='18ed7f10-be49-4569-9e04-2fc4a654efee';

Then re-run the script (or manually delete the volume from Horizon).

Examples

KloudBuster resources cleanup:

$ python force_cleanup.py -r admin-openrc.sh
Please enter your OpenStack Password:
Discovering Storage resources...
Discovering Compute resources...
Discovering Network resources...
Discovering Keystone resources...

SELECTED RESOURCES:
+------------+--------------------+--------------------------------------+
| Type | Name | UUID |
|------------+--------------------+--------------------------------------|
volumes	KBc-T0-U-R0-N0-V34	8a7746b1-5c31-4db8-b80e-58baeb21b2e9
volumes	KBc-T0-U-R0-N0-V36	b1f007e6-e46f-4b25-beca-8418f8680377
volumes	KBc-T0-U-R0-N0-V4	5168c8fb-2124-4c00-9365-0767551a1861
volumes	KBc-T0-U-R0-N0-V3	d02dd62b-cd12-4e75-8356-cf41f3d3bc86
volumes	KBc-T0-U-R0-N0-V7	32f50b20-3d8c-46f8-8e0e-1e642fe52a67
volumes	KBc-T0-U-R0-N0-V5	4ee5710f-8cb6-454d-8661-ac5daa0dec35
volumes	KBc-T0-U-R0-N0-V31	5eae2777-6680-4d63-907f-9b9280bdab36
volumes	KBc-T0-U-R0-N0-V17	cd44d985-468c-4d15-a26a-3205966f56bf
volumes	KBc-T0-U-R0-N0-V29	20cfd301-6f24-4727-a2e6-ec4c7979f24a
volumes	KBc-T0-U-R0-N0-V9	ab7a09cd-4176-4119-89bb-44f22e42ac57
volumes	KBc-T0-U-R0-N0-V1	467c6203-b30a-460d-9654-79e3798814ad
volumes	KBc-T0-U-R0-N0-V13	9b8c1697-a691-4ca8-b8aa-0ba5126f4330
volumes	KBc-T0-U-R0-N0-V20	2fae40bd-b7f8-4ad0-8b49-28199cc20219
volumes	KBc-T0-U-R0-N0-V33	29949338-9fb0-4a6f-8df5-65a97cfc5b5c
volumes	KBc-T0-U-R0-N0-V10	562a7f29-e0d4-479d-a916-deb7b062d826
volumes	KBc-T0-U-R0-N0-V35	9643b353-ac1b-4088-940d-babdfed8239a
volumes	KBc-T0-U-R0-N0-V25	1d605aed-ad92-469a-a3ae-d8763793b764
volumes	KBc-T0-U-R0-N0-V22	895ba475-debb-4b06-9372-dabebfd26b1c
volumes	KBc-T0-U-R0-N0-V6	f0c3659a-b9ef-4b15-a015-35fc845a8509
volumes	KBc-T0-U-R0-N0-V37	df749f20-f2a9-4d8e-b1c5-667c3c64bf15
volumes	KBc-T0-U-R0-N0-V32	5cca56d7-9543-470e-a964-1f6a314ee3a7
volumes	KBc-T0-U-R0-N0-V0	eb4e82d7-131e-417a-9bbb-0aedbd3c2263
volumes	KBc-T0-U-R0-N0-V38	65737d70-c41d-4a3d-853e-ae4c9ecae44d
volumes	KBc-T0-U-R0-N0-V23	04c5bcdb-49b5-4006-9479-1f15b530cfcc
volumes	KBc-T0-U-R0-N0-V11	181c2dc4-56fd-4f42-ab5d-5e9f9b8a3be5
volumes	KBc-T0-U-R0-N0-V18	6f78f429-6603-4dba-9fa0-cbc601c170a1
volumes	KBc-T0-U-R0-N0-V39	b9878b28-9a34-43b0-a5ea-46f7598b23f7
volumes	KBc-T0-U-R0-N0-V19	1a2ef52a-a990-4cb8-974e-2e7bfde07e64
volumes	KBc-T0-U-R0-N0-V12	78761313-89d0-47df-b8a6-6d6baac5a48d
volumes	KBc-T0-U-R0-N0-V8	712c06bb-75a1-4d3b-8e7e-1d1845e2636e
volumes	KBc-T0-U-R0-N0-V30	baaffd6c-ed0c-41c8-9f81-a59e8cef8318
volumes	KBc-T0-U-R0-N0-V21	4ef6e3fd-e102-45f2-b69f-cc28049667b4
volumes	KBc-T0-U-R0-N0-V28	728edd5d-df01-4eae-8811-1e8e0c1357d6
volumes	KBc-T0-U-R0-N0-V14	33fe1128-a4da-4d68-b3fe-e160856c2b46
volumes	KBc-T0-U-R0-N0-V15	7fac9831-2ade-487f-9c79-126b5981df5a
volumes	KBc-T0-U-R0-N0-V26	801f95d4-1100-4bbd-9ec1-5fbe925b70d5
volumes	KBc-T0-U-R0-N0-V27	61802296-9201-4d7a-aeda-62f2ad8b2de2
volumes	KBc-T0-U-R0-N0-V24	9fab9127-a496-41ad-b8ab-7bdc83d0df7e
volumes	KBc-T0-U-R0-N0-V2	ed95d6c3-497e-4e5f-99b1-8f9c5bd82a54
volumes	KBc-T0-U-R0-N0-V16	7083ac1d-1383-4a6f-b95c-cc11c5fe4eda
sec_groups	KBc-T0-U-R0-N0-SG0	b324ce05-384a-40e5-95f9-4e7e9dccb9d8
routers	KBc-T0-U-R0	143a6fc6-5558-41c9-90cf-a08c4d26d37e
networks	KBc-T0-U-R0-N0	d300fe6d-260b-4a99-99bc-a6a187c0fbc3
tenants	KBc-T0	5d344c4be893420d9d94c7434143b09d
users	KBc-T0-U	d26097b180c64e34b80bfa4e73418267
+------------+--------------------+--------------------------------------+

Warning: You didn't specify a resource list file as the input. The script will delete all resources shown above.
Are you sure? (y/n) y
*** STORAGE cleanup
 + VOLUME KBc-T0-U-R0-N0-V34 is successfully deleted
 + VOLUME KBc-T0-U-R0-N0-V36 is successfully deleted
 + VOLUME KBc-T0-U-R0-N0-V4 is successfully deleted
 + VOLUME KBc-T0-U-R0-N0-V3 is successfully deleted
 + VOLUME KBc-T0-U-R0-N0-V7 is successfully deleted
 + VOLUME KBc-T0-U-R0-N0-V5 is successfully deleted
 + VOLUME KBc-T0-U-R0-N0-V31 is successfully deleted
 + VOLUME KBc-T0-U-R0-N0-V17 is successfully deleted
 + VOLUME KBc-T0-U-R0-N0-V29 is successfully deleted
 + VOLUME KBc-T0-U-R0-N0-V9 is successfully deleted
 + VOLUME KBc-T0-U-R0-N0-V1 is successfully deleted
 + VOLUME KBc-T0-U-R0-N0-V13 is successfully deleted
 + VOLUME KBc-T0-U-R0-N0-V20 is successfully deleted
 + VOLUME KBc-T0-U-R0-N0-V33 is successfully deleted
 + VOLUME KBc-T0-U-R0-N0-V10 is successfully deleted
 + VOLUME KBc-T0-U-R0-N0-V35 is successfully deleted
 + VOLUME KBc-T0-U-R0-N0-V25 is successfully deleted
 + VOLUME KBc-T0-U-R0-N0-V22 is successfully deleted
 + VOLUME KBc-T0-U-R0-N0-V6 is successfully deleted
 + VOLUME KBc-T0-U-R0-N0-V37 is successfully deleted
 + VOLUME KBc-T0-U-R0-N0-V32 is successfully deleted
 + VOLUME KBc-T0-U-R0-N0-V0 is successfully deleted
 + VOLUME KBc-T0-U-R0-N0-V38 is successfully deleted
 + VOLUME KBc-T0-U-R0-N0-V23 is successfully deleted
 + VOLUME KBc-T0-U-R0-N0-V11 is successfully deleted
 + VOLUME KBc-T0-U-R0-N0-V18 is successfully deleted
 + VOLUME KBc-T0-U-R0-N0-V39 is successfully deleted
 + VOLUME KBc-T0-U-R0-N0-V19 is successfully deleted
 + VOLUME KBc-T0-U-R0-N0-V12 is successfully deleted
 + VOLUME KBc-T0-U-R0-N0-V8 is successfully deleted
 + VOLUME KBc-T0-U-R0-N0-V30 is successfully deleted
 + VOLUME KBc-T0-U-R0-N0-V21 is successfully deleted
 + VOLUME KBc-T0-U-R0-N0-V28 is successfully deleted
 + VOLUME KBc-T0-U-R0-N0-V14 is successfully deleted
 + VOLUME KBc-T0-U-R0-N0-V15 is successfully deleted
 + VOLUME KBc-T0-U-R0-N0-V26 is successfully deleted
 + VOLUME KBc-T0-U-R0-N0-V27 is successfully deleted
 + VOLUME KBc-T0-U-R0-N0-V24 is successfully deleted
 + VOLUME KBc-T0-U-R0-N0-V2 is successfully deleted
 + VOLUME KBc-T0-U-R0-N0-V16 is successfully deleted
*** COMPUTE cleanup
*** NETWORK cleanup
 + SECURITY GROUP KBc-T0-U-R0-N0-SG0 is successfully deleted
 + Router Gateway KBc-T0-U-R0 is successfully deleted
 + Router Interface 10.1.0.3 is successfully deleted
 + ROUTER KBc-T0-U-R0 is successfully deleted
 + NETWORK KBc-T0-U-R0-N0 is successfully deleted
*** KEYSTONE cleanup
 + USER KBc-T0-U is successfully deleted
 + TENANT KBc-T0 is successfully deleted

Delete all resources with a name starting with “HA”:

$ python force_cleanup.py -r admin-openrc.sh --filter 'HA'
Discovering Storage resources...
Discovering Compute resources...
Discovering Network resources...
Discovering Keystone resources...

SELECTED RESOURCES:
+----------+--+--------------------------------------+
| Type | Name | UUID |
|----------+--+--------------------------------------|
networks	HA network tenant b4d72c4ec4254c789ee11700e3f6d7a4	ed2912db-4a56-4673-828c-c825e9f8d7ac
networks	HA network tenant 890190a4482448d197606d663702efc2	32ee3483-8aee-4a97-a2d2-62ac7e521c67
networks	HA network tenant 0550a6a1045a40a1aa9cf3b92731ef00	586cc6e2-eec8-4927-8100-993027b6c925
networks	HA network tenant 3c0a953100964440ac1bc8c1611ce96e	fa3ff23e-7a62-458d-911f-299f938685a0
networks	HA network tenant 74a1ec7f4155403cbb482ea6be857295	09cee2bc-a2b7-4680-a6f0-542881f0fcd2
networks	HA network tenant 45f2158c9fd2496ab68c51ef69d0cb80	df6e0506-9ede-4df9-adc1-11f3046a94c6
networks	HA network tenant 19dec7d3b39c48ef85b9d5e2500361f5	227c1e27-b117-43d6-9f0e-e1bd11993c05
networks	HA network tenant 5d344c4be893420d9d94c7434143b09d	c3c2eebb-95b0-4a0c-b700-5591b4992ce1
+----------+--+--------------------------------------+

Warning: You didn't specify a resource list file as the input. The script will delete all resources shown above.
Are you sure? (y/n) y
*** STORAGE cleanup
*** COMPUTE cleanup
*** NETWORK cleanup
 + NETWORK HA network tenant b4d72c4ec4254c789ee11700e3f6d7a4 is successfully deleted
 + NETWORK HA network tenant 890190a4482448d197606d663702efc2 is successfully deleted
 + NETWORK HA network tenant 0550a6a1045a40a1aa9cf3b92731ef00 is successfully deleted
 + NETWORK HA network tenant 3c0a953100964440ac1bc8c1611ce96e is successfully deleted
 + NETWORK HA network tenant 74a1ec7f4155403cbb482ea6be857295 is successfully deleted
 + NETWORK HA network tenant 45f2158c9fd2496ab68c51ef69d0cb80 is successfully deleted
 + NETWORK HA network tenant 19dec7d3b39c48ef85b9d5e2500361f5 is successfully deleted
 + NETWORK HA network tenant 5d344c4be893420d9d94c7434143b09d is successfully deleted
*** KEYSTONE cleanup

Dry run mode, regular expression, environment variable credentials, find all
resources with a name ending with “ext”:

$ python force_cleanup.py --dryrun --filter '.*ext$'
Discovering Storage resources...
Discovering Compute resources...
Discovering Network resources...
Discovering Keystone resources...

!!! DRY RUN - RESOURCES WILL BE CHECKED BUT WILL NOT BE DELETED !!!

SELECTED RESOURCES:
+----------+-------------+--------------------------------------+
| Type | Name | UUID |
|----------+-------------+--------------------------------------|
| networks | storm-b-ext | a9e91d24-bb21-4321-a0d5-3408d15b25b4 |
+----------+-------------+--------------------------------------+

*** STORAGE cleanup
*** COMPUTE cleanup
*** NETWORK cleanup
 + NETWORK storm-b-ext should be deleted (but is not deleted: dry run)
*** KEYSTONE cleanup

Frequently Asked Questions

KloudBuster in a nutshell?

A self contained, fully automated and open source OpenStack VM-level tenant
network and storage scale measurement tool.

Why is a tool like KloudBuster useful?

Before KloudBuster it was practically very difficult and time consuming to load
an OpenStack cloud at a scale that reflects large deployments with traffic on
the data plane or the storage plane and to measure its impact where it counts:
at the VM application level. To the point that practically very few people would
take the pain of conducting such experiment except perhaps for very small scale
setups (such as single rack, 2 compute nodes). Just to give an idea, to
replicate manually what a 15-minute KloudBuster run can do on a medium size
cloud (2 racks, less than 100 nodes and 40GE links), would require at the very
least several days of hard-to-repeat work assuming the person doing that test
knows how to do all the different small tasks needed to obtain similar results:

	create a VM image with the appropriate test packages (not trivial to find
which packages to use)

	create all the tenants/users/routers/resources/VMs

	place the VMs in a way that makes sense for scale testing (such as rack based
placement)

	provision the test VMs with the right configuration

	orchestrate the test VMs to start at the same time (cannot be manual due to
the scale, we’re talking about hundreds of client VMs to coordinate)

	repatriate all the results from all the client VMs when the test is finished
(which itself can represent a very large amount of data)

	consolidate all the results in a way that makes sense system wise and is easy
to interpret

	present results in a nice digestible format

And this is just for the simplest of the KloudBuster runs. Dual cloud scale
testing (where 1 testing cloud loads the cloud under test to scale up the North
South traffic) requires juggling with 2 OpenStack clouds at the same time,
KloudBuster handles that mode by design and as easily as the single-cloud scale
test. Latest features add support for periodic reporting (e.g. latency stats
every 5 seconds), server mode with RESTFUL API control by external orchestrators
(this is required for any form of automated HA testing) or scale progressions
(e.g. collect latency numbers for 10,000 clients to 200,000 clients by increment
of 10,000 clients, at that level of scale recreating every resource set from
scratch at every iteration is going to take too much time). All of these
advanced features are clearly impossible to do manually or semi-manually.

What do you mean by comprehensive end to end scale testing?

You could start with a completely idle OpenStack cloud with zero resources and
zero data plane traffic (as if you just deployed OpenStack on it). Within
minutes you have a cloud that is fully loaded with tenants, users, routers,
networks, VMs and with all network pipes filled to capacity (if the network
architecture and configuration is tuned properly) with a massive amount of live
HTTP traffic or storage traffic. After the test, you revert back to the original
idle state and you have a nice HTML report with the data plane characterization
of your cloud or charts representing the scalability of your storage back end
viewed from VM applications.

How scalable is KloudBuster itself?

All the runs so far have shown bottlenecks residing in the cloud under test.
KloudBuster is designed to scale to an extremely large number of VM end points
thanks to the use of an efficient distributed key value store and the associated
publish/subscribe service (Redis) for the scale orchestration. Redis has shown
to scale to thousands of subscribers without any problem while more traditional
scaling tools that use SSH to control the end points will have trouble keeping
up past a few hundred sessions.

General Usage Questions

Is there a way to prevent KloudBuster from deleting all the resources?

In cfg.scale.yaml, there is a “cleanup_resources” property which is True by
default. Set it to False and KloudBuster won’t clean up the resources after the
run.

Is there a way to cleanup all lingering resources created by KloudBuster?

All resources created by KlousBuster have a “KB_” prefix in their name. The
“force_cleanup” script will clean up all resources that have a name starting
with “KB_”.

How are KloudBuster VM images managed?

KloudBuster VM images are built using OpenStack diskimage-builder (or DIB) and
have a version (single number).

Starting from version 7.0.0

The name of the VM image is “kloudbuster-<version>” (e.g. “kloudbuster-7.0.0”).
That image is now always included in the container image (which is why it is big).
When running KloudBuster from the container, it will automatically upload
that VM image from the local copy in the container.

Prior to version 7.0.0

The default name of an image is
“kloudbuster_v<version>” (e.g. “kloudbuster_v6”). Normally each KloudBuster
application is associated to a recommended KloudBuster VM image version.

This is indicated in the output of –version:

$ python kloudbuster.py --version
6.0.3, VM image: kloudbuster_v6

In this example, the KloudBuster application is version 6.0.3 and the matching
VM image is v6. By default KloudBuster will use the Glance image that is named
“kloudbuster_v6” (this can be overridden in the configuration file).

Note that if the user specifies a different VM image version in the
configuration file, a warning will be issued to indicate that there might be
some incompatibilities (but the run will proceed):

2015-08-26 10:47:10.915 38100 INFO kb_runner [-] Waiting for agents on VMs to come up...
2015-08-26 10:47:15.918 38100 INFO kb_runner [-] 0 Succeed, 0 Failed, 1 Pending... Retry #0
2015-08-26 10:47:20.920 38100 INFO kb_runner [-] 1 Succeed, 0 Failed, 0 Pending... Retry #1
2015-08-26 10:47:20.961 38100 WARNING kb_runner [-] The VM image you are running (2.0) is not the expected version (6) this may cause some incompatibilities

It is recommended to always use the appropriate VM image version to avoid any
potential incompatibility.

HTTP Data Plane Testing

How many TCP connections exactly are created, how many requests are generated and how long do the connections stay?

KloudBuster will create the exact number of HTTP connections configured and will
keep them active and open until the end of the scale test. There is a 1:1
mapping between an HTTP connection/client and 1 TCP connection (the same TCP
connection is reused for all requests sent by the same client). For example,
with 100 HTTP servers, 1000 HTTP connections and 500 HTTP requests/sec per HTTP
server, the total number of simultaneous HTTP connections will be 100,000 at any
time during the scale test and the number of HTTP requests generated will be
50,000 rps.

Why pick wrk2 to generate HTTP traffic?

This tool was chosen among many other open source tools because it was tested to
be the most scalable (highest number of connections/rps per CPU) and provided
very accurate HTTP throughput and latency results (which cannot be said of most
other tools - see FAQ on how latency is calculated).

Storage Scale Testing

What kind of VM storage are supported?

KloudBuster cam measure the performance of ephemeral disks and Cinder attached
volumes at scale.

How to measure the fastest IOPs or Throughput from a VM ?

This feature is only available from the CLI by using a properly defined configuration file.
To measure the fastest IOPs, omit the “rate_iops” and “rate” parameters from the
workload definition in the configuration file.

The file kloudbuster/cfg.1GB.yaml provides and example of configuration file to measure
the highest IOPs and throughput for random/sequential, read/write for 1 VM on 1 1GB file
residing on an attached volume.

How to interpret the generated results in json?

General parameters:

	test_mode: is always “storage”

	storage_target: indicates if the storage used is a Cinder block storage (“volume”) or an ephemeral disk,

	time: time the test was executed

	version: KloudBuster version

	tool: the FIO version used to generate the results

	block_size: the unit in the value indicates the unit (e.g “4k” = 4 kilobytes)

	iodepth: number of in-flight operations,

	total_client_vms: total number of VMs running an FIO client

	timeout_vms: number of VM/fio clients that did not return a result within the allocated time
(this parameter is absent if there was no VM timing out, should not be present for most runs)

These parameters represent aggregated values for all VMs (to get a per VM count, divide the value by the number of
client Vms (total_client_vms):

	read_runtime_ms, write_runtime_ms: aggregated time the fio tests ran in msec as measured by fio

	rate_iops: aggregated requested number of IOPs, 0 or missing = unlimited (i.e. test as high as possible)

	read_iops, wrote_iops: aggregated read or write IO operations per second as measured by fio
(if rate_iops is not zero, will be <= rate_iops)

	rate: aggregated requested kilobytes per second, 0 or missing = unlimited (i.e. test as high as possible)

	read_bw, write_bw: aggregated read or write bandwidth in KB/sec
(if rate is not zero, will be <= rate)

	read_KB, write_KB: aggregated number of kilobytes read or written as measured by fio

Latency values are reported using a list of pre-defined percentiles:

	read_hist: a list of pairs where each pair has a percentile value and a latency value in micro-seconds
e.g. [99.9, 1032] indicates that 99.9% of all I/O operations will take 1032 usec or less to complete

Common Pitfalls and Limitations

AuthorizationFailure and SSL Exception when running KloudBuster

2016-05-12 17:20:30 CRITICAL AuthorizationFailure: Authorization Failed: SSL exception connecting to https://172.29.86.5:5000/v2.0/tokens: [SSL: CERTIFICATE_VERIFY_FAILED] certificate verify failed (_ssl.c:765)

This exception most likely indicates that the OpenStack API uses SSL and that
the CA certificate file is missing in the openrc file used. Check that the
openrc file used:

	has OS_AUTH_URL using https

	either has OS_CACERT missing or pointing to an invalid or missing certificate
file path

To fix this you will need to have the OS_CACERT variable in your openrc file
point to a valid certificate file (you will need to get this certificate file
from the cloud admin).

Creating the image with diskimage-builder fails with an “import yaml” error

This error means that the python PyYAML package is not installed or that your
/etc/sudoers file is configured in a way that causes a sudo script in diskimage-
builder to fail. To check if PyYAML is installed: pip list | grep PyYAML If
PyYAML is installed, comment out this line in /etc/sudoers (use “sudo visudo”
to modify that file):

#Defaults secure_path="/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin"

Development

Building the KloudBuster VM and Docker images

This section describes how to rebuild:

	the KloudButer VM Image from the git repository source code

	the KloudBuster Docker image

A Linux server with python, git and qemu utilities installed is required.

Create a virtual environment (if not done already):

virtualenv vkb
source vkb/bin/activate

Ubuntu/Debian based:

sudo apt-get install python-dev git qemu-utils
pip install PyYAML

Redhat/Fedora/CentOS based:

sudo yum install python-devel git qemu-img
pip install PyYAML

Build the image with below commands:

Clone the kloudbuster repository if you have not done so
git clone https://opendev.org/x/kloudbuster.git
cd kloudbuster
Install kloudbuster
pip install -e .
Run the build image script
$./kb_build.sh

After a few minutes, the qcow2 and container images will be built and available in the same
directory. The qcow2 and container images will be named after the version (e.g. kloudbuster-7.0.0.qcow2 and berrypatch/kloudbuster:7.0.0).

Pushing the Docker container to DockerHub

The KloudBuster Docker images are published in the DockerHub berrypatch repository:
https://hub.docker.com/r/berrypatch/kloudbuster/

To publish you need to be a member of the berrypatch kloudbuster team. After the login (requires your DockerHub username and password), push the appropriate version to berrypatch:

sudo docker login
sudo docker push berrypatch/kloudbuster:7.0.0

Contributing

Contribute to KloudBuster

Below are a simplified version of the workflow to work on KloudBuster. For complete instructions, you have to follow the Developer’s Guide in OpenStack official documents. Refer to below section for links.

Start working

Before starting, a GitHub/OpenStack respository based installation must be done. Refer here for detailed documentation.

	From the root of your workspace, check out a new branch to work on:

$ git checkout -b <TOPIC-BRANCH>

	Happy working on your code for features or bugfixes;

Before Commit

There are some criteria that are enforced to commit to KloudBuster. Below commands will perform the check and make sure your code complys with it.

	PEP 8:

$ tox -epep8

Note

The first run usually takes longer, as tox will create a new virtual environment and download all dependencies. Once that is the done, further run will be very fast.

	Run the test suite:

$ tox -epython27

	If you made a documentation change (i.e. changes to .rst files), make sure the documentation is built as you expected:

$ cd <kloudbuster-ws-root>/doc
$ make html

Once finished, the documentation in HTML format will be ready at <kloudbuster-ws-root>/doc/build/html.

Submit Review

	Commit the code:

$ git commit -a

Note

For a feature commit, please supply a clear commit message indicating what the feature is; for a bugfix commit, please also containing a launchpad link to the bug you are working on.

	Submit the review:

$ git review <TOPIC-BRANCH>

The members in the KloudBuster team will get notified once the Jenkin verification is passed. So watch your email from the review site, as it will contain the updates for your submission.

	If the code is approved with a +2 review, Gerrit will automatically merge your code.

File Bugs

Bugs should be filed on Launchpad, not GitHub:

https://bugs.launchpad.net/kloudbuster

Build the KloudBuster Docker Image

Two files are used to build the Docker image: Dockerfile and .dockerignore. The former provides all the build instructions while the latter provides the list of files/directories that should not be copied to the Docker image.

In order to make the Docker image clean, remove all auto generated files from the root of your workspace first. Specify the image name and the tag, and feed them to docker build. Examples to build the image with name “berrypatch/kloudbuster”, tag “6.0.4”:

$ cd <kloudbuster-ws-root>
$ sudo docker build --tag=berrypatch/kloudbuster:6.0.4 .

The images should be available for use:

$ sudo docker images
REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
berrypatch/kloudbuster 6.0.4 0f17ae788c69 8 minutes ago 443.1 MB

To push the new image to the KloudBuster Docker Hub repository (berrypatch), you need to login to
Docker Hub (sudo docker login) and you need to have write access to the berrypatch/kloudbuster repository
before you can push the new container:

sudo docker login
sudo docker push berrypatch/kloudbuster:6.0.4

It is also good practice to build and override the latest tag:

sudo docker build --tag=berrypatch/kloudbuster:latest .
sudo docker push berrypatch/kloudbuster:latest

Developer’s Guide of OpenStack

Feedbacks and contributions to KloudBuster are welcome.

KloudBuster follows the same workflow as any other OpenStack project.

If you would like to contribute to the development of OpenStack, you must
follow the steps in this page:

https://docs.openstack.org/infra/manual/developers.html

If you already have a good understanding of how the system works and your
OpenStack accounts are set up, you can skip to the development workflow
section of this documentation to learn how changes to OpenStack should be
submitted for review via the Gerrit tool:

https://docs.openstack.org/infra/manual/developers.html#development-workflow

Pull requests submitted through GitHub will be ignored.

Index

 _static/down.png

_static/plus.png

_static/file.png

_static/minus.png

_images/kb-http-east-west.png
KloudBuster HTTP Data Plane Scale Test (East-West/single cloud)

server tenants
each tenant con have
multiple routers, networks

_ - and VMs running an HTTP server

internal neutron network
carrying HTTP traffic between
_ the HTTP clients and
the HTTP servers
using static routes to the
appropriate virtual router

control plane AP]

HTTP connections and
troffic...lots of them

Client side tenont

each VM runs an HTTP troffic
generator capable of simulating
thousands of HTTP clients
interacting with 1 HTTP server

KoudBuster App
the one who drives
the entire scale test proxy UM running the Redis server.
Allscale orchestration and
results reporting traffic between
the client Vs and the KloudBuster
app goes through it

_static/up-pressed.png

_static/up.png

_images/kb-http-monitoring.png
KloudBuster HTTP Monitoring Test Report

Latency(ms)

] (-] O %09% 9% (0% O 75%

04:0¢

0- KloudBuster

_images/kb-http-north-south.png
KloudBuster HTTP Data Plane Scale Test (North-South/dual cloud)

tenant1 tenant 2 tenant 100

OpensStack
Cloud Under Test

~ = serverside tenants
host the HTTP servers
through the North South
data path (similar to real
deployments)

North South
HTTP traffic

~ can scale the heck out of
‘any North South routing infra
with up to hundreds of thousand.

gamway@

router | htp connections
Q
~_ internal network

client side tenant
- - = = - runs ina different cloud

OpenStack
Testing Cloud

_images/kb-http-rack-rack.png
KloudBuster rack to rack East-West dataplane scale test

servertenants
configured to distribute
HTTP servers across
~ - Tormore "server-side’ racks

East-West

http traffic internal neutron network

carrying HTTP troffic between
the HTTP clients and
the HTTPservers across racks

HTTP connections and
troffic...lots of them
tostress rack to rack
networklinks

external network

“client-side” rack

nav.xhtml

 Table of Contents

 		
 Welcome to the KloudBuster documentation!

 		
 KloudBuster version 7

 		
 Feature List

 		
 New in Release 7

 		
 Limitations and Non-Goals

 		
 Contributions and Feedbacks

 		
 Licensing

 		
 Links

 		
 Architecture

 		
 Data Plane Scale Test

 		
 East-West Data Plane Scale Test

 		
 Rack to Rack Data Plane Scale

 		
 North South Data Plane Scale Test

 		
 Storage Scale Test

 		
 Progression Runs

 		
 Latency and Distributed Latency at Scale

 		
 Gallery

 		
 Sample HTTP Scale Report

 		
 Sample HTTP Monitoring Report

 		
 Sample Storage Scale Report

 		
 Usage and Quick Start Guides

 		
 KloudBuster User Interfaces

 		
 OpenStack Cloud Pre-Requisites

 		
 KloudBuster Installation Options

 		
 Quick Start Guides

 		
 KloudBuster Docker Container Quick Start Guide

 		
 KloudBuster Pip Install Quick Start Guide

 		
 KloudBuster VM Application Quick Start Guide

 		
 KloudBuster Git Quick Start Guide

 		
 Using the KloudBuster Web UI

 		
 Interacting with the KloudBuster REST Interface

 		
 REST Documentation

 		
 Display version and retrieve default configuration

 		
 Create a new Kloudbuster session

 		
 Start a storage benchmark using the running configuration

 		
 Get the KloudBuster VM Image

 		
 Extract the KloudBuster VM image to the local directory

 		
 Configuration Options

 		
 Default HTTP Scale Test

 		
 Default Storage Scale Test

 		
 KloudBuster Configuration File

 		
 General Configuration Options

 		
 HTTP Test Specific Options

 		
 Storage Test Specific Options

 		
 KloudBuster Standard Scale Profile

 		
 Standard scale profile definition

 		
 How to run the standard scale profile

 		
 Interpret the results

 		
 Advanced Features

 		
 Control the VM Placement

 		
 Interactive mode

 		
 Running KloudBuster without admin access

 		
 Displaying the Results

 		
 Examples of running KloudBuster

 		
 Example 1: HTTP Scale, Single-cloud Mode

 		
 Example 2: HTTP Scale, Dual-cloud Mode, Save results

 		
 Example 3: HTTP Scale, Single-cloud Mode, Customized VM placements

 		
 Example 4: Storage benchmark, Save results to JSON

 		
 OpenStack Resources Cleanup

 		
 How to Select Resources to Delete

 		
 Resource list (–file <pathname>)

 		
 Discovery with Resource name filter (–filter <regex>)

 		
 Credentials (RC) file (–rc <pathname>)

 		
 Dry Run (–dryrun)

 		
 Installation and Dependencies

 		
 Known Issues and Limitations

 		
 Examples

 		
 Frequently Asked Questions

 		
 KloudBuster in a nutshell?

 		
 Why is a tool like KloudBuster useful?

 		
 What do you mean by comprehensive end to end scale testing?

 		
 How scalable is KloudBuster itself?

 		
 General Usage Questions

 		
 Is there a way to prevent KloudBuster from deleting all the resources?

 		
 Is there a way to cleanup all lingering resources created by KloudBuster?

 		
 How are KloudBuster VM images managed?

 		
 Starting from version 7.0.0

 		
 Prior to version 7.0.0

 		
 HTTP Data Plane Testing

 		
 How many TCP connections exactly are created, how many requests are generated and how long do the connections stay?

 		
 Why pick wrk2 to generate HTTP traffic?

 		
 Storage Scale Testing

 		
 What kind of VM storage are supported?

 		
 How to measure the fastest IOPs or Throughput from a VM ?

 		
 How to interpret the generated results in json?

 		
 Common Pitfalls and Limitations

 		
 AuthorizationFailure and SSL Exception when running KloudBuster

 		
 Creating the image with diskimage-builder fails with an “import yaml” error

 		
 Development

 		
 Building the KloudBuster VM and Docker images

 		
 Pushing the Docker container to DockerHub

 		
 Contributing

 		
 Contribute to KloudBuster

 		
 Start working

 		
 Before Commit

 		
 Submit Review

 		
 File Bugs

 		
 Build the KloudBuster Docker Image

 		
 Developer’s Guide of OpenStack

_images/kb-storage.png
- KloudBuster OpenStack Storage Scale Test

drives the entire scale test

; OpensStack Cloud VWM rurming FIO

client test program
internal neutron network proa

carrying orchestration
and reporting traffic

test scale of
_ ephemeral disks

- internal storage network

Block Storage
Cluster

Configurable block storage
workloads through
Cinder attached volumes

proxy UM running the Redis server.
Allscale orchestration and

results reporting traffic between
the client VMs and the KloudBuster
app goes through it

_static/ajax-loader.gif

_images/kb-http-thumbnail.png

_images/kb-storage-thumbnail.png

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

